If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9d^2-151=0
a = 9; b = 0; c = -151;
Δ = b2-4ac
Δ = 02-4·9·(-151)
Δ = 5436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5436}=\sqrt{36*151}=\sqrt{36}*\sqrt{151}=6\sqrt{151}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{151}}{2*9}=\frac{0-6\sqrt{151}}{18} =-\frac{6\sqrt{151}}{18} =-\frac{\sqrt{151}}{3} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{151}}{2*9}=\frac{0+6\sqrt{151}}{18} =\frac{6\sqrt{151}}{18} =\frac{\sqrt{151}}{3} $
| 3x−4=8−3x | | (3x-5)(4x-7)=0 | | 8x+24+3x(x+3)=4x(2)+12x | | 13=2-3z | | (1x-8=0 | | -0.3(4x+3)+0.4(6x+1)=43 | | -7+6b=5 | | 12=20-2y | | 24=60-6f | | 100-0.25p=40+0.75p | | 5,4(0,5x+4)=8,1(4+x) | | 144=12*(5−14k) | | 4*3^x=12*2^x | | 144=12(5−14x) | | x^2+9x=532 | | 17/4-3y^2-7y=0 | | 6−3x(x−1)=12−3x2 | | 66m-342=13-4642 | | (5x)=(87)=(10x+17) | | (5x)=87=(10x+17) | | ½x-3=5+⅓x | | 0.02/0.02=n/0.5 | | 6x+10-3x+6=25 | | 3(x+1)=2(1-x)+6 | | 250=150-x | | 60-3p=2p-10 | | 25x7.72-14=180 | | 6x=54 | | 3^2-4x+1=0 | | 1−x/4=10 | | 7*3x=37 | | X+2-3=3x-5 |